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1. I n t r o d u c t i o n  

In the past few years, there has been much activity regarding the enumeration of 

faces of cubical polytopes. In this paper we continue efforts to put this subject 

on more of a parallel track with that of simplicial polytopes. 

In §2, we discuss some basic constructions of cubical complexes--mirrors, 

fissures and barycentric covers. In §3 we use the mirror and fissure operations 

to produce what we call "neighborly" cubical spheres. In §4, we define Adin's 

"cubical h-vector", an enumerative invariant for cubical complexes [1], and use 

it to prove a special case of an upper bound conjecture due to Kalai. 

In §5 we consider a cubical analog of the generalized lower bound theorem for 

simplicial polytopes, formulated in terms of Adin's cubical h-vector. We show 

that if this conjecture holds for all cubical spheres, it gives the tightest set of 

linear inequalities possible for their face numbers. We conclude with questions 

in §6. 

We would like to thank Rachel Hastings, Gabor Hetyei and an anonymous 

referee for reading and making useful comments on earlier versions of this paper. 

Some preliminaries on posets are in order here. For a poset P,  we denote by 

[x,y] or [x,y]p the interval {z • P: x < z < y}, by A(x) or Ap(X) the principal 

(lower) o r d e r  ideal  {z • P: z < x}, and by V(x) or Vp(X) the principal f i l ter  

{z E P: z > x}. We will also refer to Vp(x) as the link in P of x or lkp x. By 

we mean P with a 0 and 1 adjoined, and by pop we mean the underlying set of 

P with the order reversed. We denote by IP] the (simplicial) complex of chains 

in P.  

By a s impl ic ia l  pose t  we mean one in which every order ideal A(x) is a 

Boolean algebra (i.e., a product of copies of B1, the Boolean algebra on one 

element). By a cub ica l  pose t  we mean one in which each order ideal A(x) is 

a product of copies of I, the face poset of an interval, excluding the empty set. 

We consider I to be the poser {0, 1 , -1}  with ordering 1 < 0 and - 1  < 0 (and 

so the Hasse diagram of I is A). Thus the face poset of any simplicial complex 

(including the empty set) is simplicial, while the face poset of any cubical complex 

(excluding the empty set) is cubical. For this reason, throughout this paper when 

we consider the face poset of any simplicial complex, it will always inc lude  the 

empty set, while that of a cubical complex will always e x c l u d e  the empty set. 

Two other concepts we will use are the boundary and interior of a poset. If P 

is a finite poset, denote by OP := {y: y < x, I Vp(X)l  ~- 2} the boundary of P,  
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and call P°  := P\OP the interior of P. To keep notation to a minimum, we will 

usually denote a complex and its face poset by the same symbol. 

Both simplicial and cubical posets are ranked, the rank of an element being 

one less than the cardinality of a maximal chain ending at this element. Thus in 

a simplicial complex, the rank of a face is one more than its dimension, while in 

a cubical complex, rank is the same as dimension. We will restrict our attention 

here to simplicial posets with unique minimal element that are meet-semilattices 

(i.e., simplicial complexes) and to cubical posets P such that i 6 is a lattice (called 

cubical complexes). A poset map will be called a complex map if it preserves 

rank. Thus being a subcomplex of a cubical complex is a stronger property than 

merely being a subposet. We note that poset product corresponds to complex 

join in the simplicial case and product in the cubical case, and thus order ideals 

in cubical posets are posets of cubes. Finally, for a complex X, we denote by 

(X)k its k-skeleton (the set of all r-faces of X, r < k). 

2. Mirrors ,  f issures and barycentr ic  covers  

We define and study three constructions leading to cubical complexes. Two of 

these, mirroring and fissuring, are used in the constructions in later sections. 

2.1 MIRRORING. We begin with an operation which converts a simplicial 

complex to a cubical complex. Let T be a subcomplex of the (n - 1)-simplex 

a n-1. We can think of T (including the empty set) as a partially ordered set (the 

corresponding simplicial poset) where each face is a 0-1 vector with a 0 in the i th 

place if and only if the vertex i belongs to the face. Thus T is partially ordered 

by 0 > 1 extended componentwise. Then we construct a partially ordered set 

MT as follows: 

MT :-- {(al,a2,...,an): ( lal l , [a2[ , . . . ,  lan[) • T} C_ I s, 

partially ordered by 0 > 1 and 0 > - 1  extended componentwise. Note that  MT 
depends on the ambient simplex a n - 1  a s  well as the complex T. 

This operation has a long history. For the case of the m-gon, it was used 

by Coxeter [6] to produce regular maps {4,m]4 [½"q-l} on surfaces. It has been 

used by Davis in the study of reflection groups and toric varieties (see [7, p. 

108], for the Coxeter system (Z~ hI, [n]), and [8]). It has also been studied by 

Schulte [15, §5], where it is denoted 2 T, and in [12, §3C]. A dual version, as 
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illustrated in Figure 2, can be found in [4, §3.2]; indeed, using the notation there, 

M T  = (BTo~) °p, where the subspace arrangement is a poset with ordering by 

inclusion. 

A simple example is given in Figure 1. Here T is the simplicial complex con- 

sisting of two adjacent edges, and M T  is the boundary of the 3-cube minus two 

opposite (open) facets. 

1 2 3 

T 
111 

110 

001 

-101 

100 00-1 -100 

-1-10 

MT 
- I I I  

Figure 1. The mirror complex of two edges. 

-11-1 

PROPOSITION 2.1: M T  is the face lattice of a cubical complex in which the link 

of any vertex is isomorphic to the original simplicial complex T. If T has the 

k-skeleton of the ( n -  1)-simplex, then M T  has the ( k + 1)-skeleton of the n-cube. 

Proof: To see that M T  is a cubical complex, note that it can be realized as a 

subcomplex of the n-cube [-1, 1] n by associating the point a = (al, a2 , . . . ,  an) 

with the  face of the cube having a as its centroid. The interval lying above 

any minimal element of MT is, up to signs, the poset T. The statement about 

skeletons follows directly. | 

It follows immediately that  if T is a d-simplex, then M T  is a (d + 1)-cube. 

Further, O(MT) = M(OT). 
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We say M T  results from a mirroring of T, since if T is the boundary complex 

of a simpticial polytope P then by taking the dual pop of P, mirroring pop across 

all its facets, and then taking the dual of the resulting cell complex, we get back 

MT. This also works for more general T, as is illustrated in Figure 2, where T 

is a line segment divided into three edges. 

We note here that since the operation M commutes with poset product, we 

get M(T1 * T2) = M(T1) x M(T2), where T1 * T2 is the join of complexes T1 and 

T2. Further note that if T is a subcomplex of a n-l ,  the f-polynomials (see (6)) 

of T and M T  are related by 

(1) f (MT,  t) = 2~f(T, t/2). 

2 . 2  CUBICAL FISSURES. We define next an operation on a cubical poset C 

that depends on a pair of order ideals C1 and C2 in C. Let C(C1,C2) C C x I 

be the poset defined by 

(2) c(c~, c~) := (c,  x {1}) u (e l  n c~ x {o}) u (c~ x { - 1 } ) .  

We call this the fissure of C between C1 and C2 (or along C1 n C2). 

That C(C1, C2) is cubical follows from the fact that it is an order ideal in the 

cubical poset C x I. Topologically, we have the relation 

IC(C,,C~)l = IC, I uc,,-,c~xm (IV, nC~l × [-1, 11) 
(3) 

Uc,nc=x{-~} IC=l. 

When C is the poset of a cubical complex (also denoted by C), C(C1, C2) is the 

poset of the complex obtained by lifting C1 by height one, dropping C2 by one, 

and filling in the resulting fissure by (C1 N C2) x [-1, 1]. See Figure 3. 

We can iterate the fissuring of C between a pair of complexes as follows. Let 

C(Cl,C2) 0 :m_ C1 U C 2 ,  C(C1,C2) 1 : :  C(C1,C2) and, for r > 1, 

(4) C(C1,C2) r : :  (C(C1,C2)r-1)(CI(C1,CI CIC2)r-I,c2). 

Note that successive fissurings separate C1 and C2 by more and more copies 

of (C1 cl C2) x [-1, 1]. It follows directly from (2) and (4) that 

(5) f (c(c~,c~y, t )  = f(c~ uc2,t) +,-(1 +t)f(c~ nc2,t). 
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C1 

C2 

f 

I / / 

J(J I 

C(C1, C~ ) 

Figure 3. Fissuring along C 1 A C 2. 

2.3 BARYCENTRIC COVERS. Finally, we define a cubical complex midway 

between a complex of s imple  polytopes and its barycentric subdivision. We call 

it the b a r y c e n t r i c  cover. In the case of a simplicial complex, this is the same 

as the cubica l  b a r y c e n t r i c  subdiv is ion  used by Hetyei [10]. The remainder 

of this section is not used in what follows. 

Let K P  be the poset with elements the order relations of an arbitrary poset P,  

partially ordered by inclusion (i.e., (u _< v) < (x < y) if and only if x < u < v < 

y). As shown below, K P  is cubical whenever P is a poset having all intervals 

Boolean algebras. This includes simplicial and cubical posets (more generally, 

face posets of polyhedral complexes with simple, nonempty cells) as well as their 

duals. In fact K P  = K(P°P). It is straightforward to check that K distributes 

over product, i.e., K ( P  x Q) = K(P)  x K(Q). 

PROPOSITION 2.2: If P has Boolean intervals then K P  is a cubical poset. 

Fhrther, if P is a lattice, then so is K---P. 

THEOREM 2.3: [KP[ gives a polyhedral subdivision of [P[ by the map taking 

the point (x <_ x) to itself and the point (x < y) in [KP[ to the midpoint of the 

edge x < y in [P[, and extending linearly over every closed simplex in [KP[. 

In the case in which P is itself the face poset of a polyhedral complex, we 

obtain the following corollary, which justifies calling K P  the b a r y c e n t r i c  cover  

of P. 

COROLLARY 2.4: If P is the face poser of a polyhedral complex, then K P  is 

the face poset of a palyhedral subdivision of P, lying between P and [P[ in the 

refinement order. 

When the underlying complex of P has simple facets and P does not include 

the empty set (so P has Boolean intervals), K P  will be a cubical complex by 
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Proposition 2.2. See Figure 4(b). Further, the triangulation of each d-cube in 

K P  induced by [P[ is the standard triangulation into d! simplices given by all 

the coordinate permutations. 

~ 2<_ X2 ) 

(x 0<_ x 1 ) 

x 2) 

( x l < x  1) 

(a) (b) 
Figure 4. (a) The subdivision of the simplex x0 _< xl _< x2. 

(b) The barycentric cover of a complex with three maximal cells. 

3. Neighborly cubical spheres 

Now we use the mirroring and fissuring operations to produce a "neighborly" 

cubical sphere for each n > d + 1, i.e., a cubical d-sphere with the L~!J-skeleton 

of the n-cube. The existence of such spheres was suggested by Kalai (personal 

communication). We begin by constructing, for a given simplicial d-polytope P, 

a cubical (d + 1)-sphere having the mirror complex of OP as a subcomplex. 

THEOREM 3.1: I[ P is a simplicial d-polytope, then there is a triangulation K 

of P and a PL-cubical (d+l)-sphere C such that the mirror complex M K  is a 

subcomplex of C having M O P  as its boundary. 

Proo~ Given the polytope P, along with an arbitrary ordering on its vertices 

Vo,Vl , . . . ,  Vn+d (which we assume are in general position), we form a sequence 

of simplicial d-balls K0 , . . .  ,Kn such that  Ki C OKi_I * {Vd+i}, where Ko is the 

d-simplex spanned by vo , . . . ,  va and K~ is the join of v4+i with that part of the 

boundary of Ki-1 that  it does not see. By construction, the K~ are all PL d-balls 

and OK,~ = OP, so OMK,~ = MOP. 

Let Co be the cubical poset made up of two (d + 1)-cubes sharing a common 

boundary. We consider the (d+ 1)-cube MKo to be one of these cubes, and hence 

Co \ ( M K o )  ° is the other. Finally, [Co[ is a PL (d + 1)-sphere. 
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Define 

Ci+l := Ci(MKi, Ci \(MKi)°).  

We assert that, for 1 < i < n, C~+1 is welt-defined and is a cubical PL (d + 1)- 

sphere. To verify that  C{+1 is well-defined, we must check that both MKi and 

Ci ".(MKi) ° are subcomplexes (i.e., order ideals) in Ci. Assuming this to be true 

for Ci-1 and MK~-I, we observe that for i > 1 

MKi C M(OKi-1 * {Vd+i}) 

=MOK~_I x I 

=OMKi-1 x I 

cCi - l (Mgi -1 ,  Ci-1 " (Mgi-1)  °) 

=Ci. 

Note that beginning with C1, all the Ci are cubical complexes  and that both the 

inclusions above are inclusions of complexes (preserve rank). This shows MKi 

to be a subcomplex of Ci. 

To verify that Ci ".(MKi) ° is an order ideal in Ci, we note, by induction, that 

MKi is a full-dimensional (pure) subcomplex in the the sphere Ci, and so the 

complement of its interior is a complex. Finally, to check that Ci+l is a PL 

(d + 1)-sphere, note that MKi is a PL (d + 1)-manifold with boundary, since its 

links are links in Ki. Thus OMKi is collared in MKi [14, Corollary 2.26], and 

hence by (3), it follows that Ci+l -----~PL Ci. 

Now take C := C~ and K := K,~. | 

Figure 5 illustrates the construction of the 3-sphere C corresponding to a pen- 

tagon. Co is the 3-sphere consisting of two 3-cubes joined along their boundaries, 

and MKo is the "inside" cube. C1 is then the boundary of the 4-cube. Since 

K1 = T * va, where T is the complex of two edges, MK1 = M T  x I, where M T  

is as given in Figure 1. The final complex MK (not pictured) is the product of I 

with the cubical complex shown in Figure 2. 

A first consequence of Theorem 3.1 and its proof is the existence of "neighborly" 

cubical spheres. 
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Definition 3.2: A cubical complex is said to be n -n e i g h b o r l y  if its n-skeleton is 

that  of a cube. 

P K K K = K  
o 1 2 

C 
o 

MK 
MK 1 

o 

/ 

Z 

J ~ ...... 

C C = C  
1 2 

Figure 5. A cubical 3-sphere C from a pentagon P. 

C OROLLARY 3.3: There exist ~ ~ J -neighborly cubical d-spheres with 2 k vertices 

for every k > d. 

Proof." Choose P := C ( k , d -  1), the cyclic ( d -  1)-polytope with k vertices, 

ordered arbitrarily. Note that each ball Ki in the proof of Theorem 3.1 has as 

boundary the cyclic polytope C(d + i, d - 1). Hence, each Ki has as its L ~ J -  

skeleton the [-~-~j-skeleton of a (d + i - I)-simplex. Thus the [-~A~-skeleton of 

MOKi  is that  of a (d +/ ) -cube.  

We will show, by induction, that ( C i ) [ ~ j  = (MOKi)[~_~j. First, recall that 

Co has the (d - 1)-skeleton of a d-cube, and (Co)d-1 = (MOKo)d-1. Assuming 
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the assertion for i, it follows from the fissure construction that 

( C i + , ) [ ~ j  = (Ci(MK~,Ci \ ( M K i ) ° ) ) [ ~ j  

: (MOKi × I ) L ~ j  
[rdTi+l 

= ~ J t ~ J  

= (McOKi+I)L_~j. 

The second equality follows from the fact that the fissuring is taking place along 

MOKi, which has the same [g~2J-skeleton as Ci by the induction hypothesis. 

Thus, Ck-d-1 is the desired [d-~J-neighborly cubical d-sphere with 2 k vertices. 
| 

We remark that the spheres constructed in Corollary 3.3 are always PL. It is 

an open question whether there exist neighborly poly topal  spheres. 

4. Adin 's  h-vector  and Kalai 's  upper  bound  conjec ture  

Recently, Adin defined a "cubical h-vector" for studying the face numbers of 

cubical complexes [1]. This invariant appears to be a good analog of the usual 

h-vector for simplicial complexes. 

For a ranked poset P, with rank(P) = d, we denote by fi := fi(P) the number 

of elements of rank i and define the polynomial 

d 

(6) f(P, t) := E f~t~" 
i=0 

From this, we define polynomials hs(P, t), hsc(P, t) and he(P, t) by 

hs(P,t) = (1--t)df(P, l t~t), 

h~c(P, t) = (1 - t)df P, i2--i-t 

(7) 

(s) 

and 

(9) 

(10) 

hc(P,t) = t ( 1 - t )  d / p  2t \ 2dl + ~p(--t) d+2 
l + t  f ~  ' ] - - ~ ) +  l + t  

l+ t l  (tM~(p,t) + 2d(1 + 2p(_t)d+2) ) 
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where 2P := f (P ,  -1 )  - 1 is the reduced Euler characteristic of P (cf. [1, (1-3)1). 

In general, the coefficient of t i in a polynomial q(t) will be denoted by qi. The 

coefficients of h s, h sc and h c will be referred to, respectively, as the s impl ic ia l ,  

s h o r t  cub ica l  and cubica l  h -vec to r s  of the ranked poset P. (Note that  in h ~, 

one uses the simplicial rank in the f-polynomial, whereas in h s¢ and h c one uses 

the cubical rank.) As observed by Hetyei, 

h~C(K't) = E h~(Ikgv't)" 
vEV 

It is also useful to observe that h~ ¢ = h~ + h~+ 1 for all 0 < i < d [1]. 

Each h-polynomial has an associated g-polynomial, defined by multiplying it 

by 1 - t. The associated "g-vector" is usually taken to be the first half of the 

coefficients of the g-polynomial (excluding the middle term, when the degree is 

even, as well as the constant term). Thus, if P is the boundary complex of a 

cubical d-polytope, the degrees of h ~,  h ~ and g~ are d - 1 ,  d and d + l ,  respectively, 

so the relevant coefficients of g~ are g~ , . . . ,  g ~ l .  

Adin has shown that  the cubical h-vector has many properties analogous to 

those of the simplicial h-vector. For example, if K is Eulerian then hC(K) is 

symmetric, and for any K,  h~(K) is a lower-triangular linear transformation of 

f (K ) .  In particular, for any cubical ( d -  1)-complex K,  and for all i _ d, we 

have 

(11) h ~ ( K ) = ( - l ) i 2 d - l f _ l ( K ) + E ( - 1 ) i - J 2 J - l f j - l ( K ) Z k ~ - ! ~ = o ( d - j )  
k ' 

j= l  

where f - l ( K )  := 1 [1, Lemma 1]. The relation (11) can be inverted to give the 

f j  as nonnegative linear combinations of the h~. 

We state without proof a few more such properties of h ~. In what follows, 

we assume that  K is a cubical complex homeomorphic to a (d - 1)-ball. For 

K ° = K \ OK, we have 

I ( K  °, t) = / ( K ,  t) - f(OK, t), 

and we define h s~ for K ° as in (8), with the same rank as K,  namely, d - 1, and 

h c as in (11), but with f _ l ( K  °) := 0. 

PROPOSITION 4.1: I l K  is a cubical (d - 1)-ball, then 

1. h~(K) = hCa_~(K °) for all i, and 

2. g~(OK) = h~(K) - h~d_i(K) for all i >_ 1. 
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We now consider Kalai's upper bound conjecture for cubical spheres. Let CT be 

a [~AJ-neighborly cubical d-sphere with 2 T vertices. By definition, f~(C~) is the 

number of/-faces in an r-cube, for i < [~A].  By the cubical Dehn-Sommerville 

equations, the remaining fi(C~) are determined and thus are independent of the 

particular Cr chosen. 

CONJECTURE 4.2 (Kalai): If C is a cubical d-sphere with 2 ~ vertices, then 

£ ( c )  < £(c~), for all i. 

Using the Adin h-vector it is easy to prove the conjecture in the case of odd d 

for any cubical d-sphere whose 1-skeleton lies in the r-cube. 

THEOREM 4.3: If d is odd and C is any cubical d-sphere for which every vertex 

has degree at most r, then f i(C) <<_ fi(C~) for all i. 

Proof: If C is any such cubical d-sphere C , then lkc v is a simplicial (d - 1)- 

sphere with at most r vertices, for each v. Thus by the upper bound theorem for 

simplicial spheres, M(lkc v) <_ hs(S), where S is any [~J-neighborly simplicial 

(d - 1)-sphere with r vertices. Since d is odd, [d] = [ _ ~ j .  Thus 

hSC( c ) = X :  h (Ikcv) -< X :  h (s) = 
V V 

since C~ has the [g-~AJ-skeleton of the r-cube. Thus also f (C)  < f(CT), since 

the coefficients f j  are nonnegative linear combinations of the coefficients of h ~¢. 
| 

Figure 6. A cubical 2-ball containing K2,3. 

For each d _> 1, it is easy to find an example of a cubical d-sphere whose 1- 

skeleton does not lie in the 1-skeleton of any cube. Note first that  the complete 

bipartite graph K2,a is not a subcomplex of any cube. This is clear because 
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any two vertices in a cube that are joined by a path of length 2 must differ in 

exactly two coordinates, and so there must be precisely two such paths. Next 

consider the cubical 2-ball C in Figure 6. Note that K2,3 is a subgraph of (C)1, 

as indicated. For d >_ 2, take S d := O(C x I d- l )  D C. For d = 1 simply choose 

the boundary of a triangle. 

5. A cubical lower bound conjecture 

Adin raised the following "generalized lower bound conjecture" as a question 

[1, Question 2]. 

CONJECTURE 5.1: I l K  is a cubical d-polytope, then g~( OK) >_ 0, for all i <_ [dj.  

Here we conjecture that these are the best possible linear inequalities. 

CONJECTURE 5.2: The closed convex hull of the f-vectors of all cubical d- 

polytopes is the translated cone given by the inequalities gC >>_ O, for all i < [ ~]', 

and g~ = 2 d-1. 

Let ei denote the positive ray in the i tu coordinate direction. One approach to 

proving Conjecture 5.2 is to show that, for any 1 < i < d/2, there exist cubical 

d-polytopes with gC arbitrarily close in direction to the ray ei. If both conjectures 

are correct, then the "Adin g-cone" so defined (i.e., the set of f-vectors whose 

corresponding gO-vectors are nonnegative) is exactly the closure of the convex 

hull of all f-vectors of cubical polytopes. The first conjecture is only known to 

be true in the case i = 1 [1, 5]. We address the second conjecture here. 

5.1 STACKED CUBICAL POLYTOPES. As a first attempt,  we consider 

stacked cubical p o l y t o p e s ,  analogous to the stacked simplicial polytopes con- 

sidered by McMullen and Walkup in their paper introducing the generalized lower 

bound conjecture for simplicial polytopes [13]. 

Definition 5.3: A cubical d-polytope is k -s tacked  if its boundary is the boundary 

of a cubical ball with no interior (d - 1 - k)-faces. Similarly, a cubical d-ball is 

k - s t acked  if it has no interior (d - 1 - k)-faces. 

Definition 5.4: A simplicial complex is called k -n e i g h b o r l y  if every set of vertices 

of cardinality k is a face. 
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Neighborly stacked polytopes were used in [13, Theorem 3] to produce examples 

of simplicial polytopes  having a simplicial g-vector with a dominant  coordinate.  

The  following shows tha t  the cubical g-vector behaves analogously. 

PROPOSITION 5.5: I f  k < d/2 and {Pn} is a sequence of k-stacked cubical d- 

polytopes such that fk-l(OP,~) dominates fi(OPn) for all i < k - 1, that is, for 

each such i, 

fi(OPn) ~ 0 as n --+ 0% 
fk-1 (OPn) 

then g~(OP~) dominates g~(cgP~) for all i ¢ k. 

Proof: For each n, if Pn is k-stacked, then OPn = OK~, where K~ is a cubical 

ball with no interior (d - 1 - k)-faces. Thus f i (K~)  = 0 for all i < d - 1 - k. 

K ° Since h~(K~) is a lower-triangular linear t ransformat ion of f (  n), this means 
C O tha t  hi(K~)  = 0 for all i < d - k. Thus  by Proposi t ion 4.1, hC(K~) = 0 for all 

i > k and so g~(OP~) = h~(K~) for all i < k, and g~(OP~) = 0 for k < i < [d j .  
g ° = Since f i ( , , )  0 for i < d - 1 - k and fk- l (OPn) dominates  fi(OPn) for all 

i < k - 1, the same is t rue for f (K~) .  Thus h~(K=) dominates  h~(K~) for all 

i < k. Thus  g~(OPn) dominates  g~(OPn) for all i # k. | 

For cubical 4-polytopes,  we can write 

g~ = (g~, g~) = (f0 - 16, 16 - 3f0 + 4f3). 

It is easy to verify tha t  the boundary  of any 1-stacked 4-polytope has g~ = 0, 

and hence the ray el is in the convex hull of f -vectors  of cubical 4-polytopes.  

The  difficulty is in finding cubical 4-polytopes with gC arbitrari ly close to the ray 

e2, i.e., cubical 4-polytopes with an arbitrari ly high ratio of facets to vertices. 

Jockusch was able to construct  cubical 4-polytopes with a higher ratio of facets 

to vertices than  previously expected possible, but  did not  determine if there is 

any bound  on this ratio [11]. 

In general, it is not  at  all clear whether  there exist k-stacked cubical polytopes  

with many  (k - 1)-faces relative to smaller faces. However for k = 1, we have the 

following, which was noted in [11] for d = 4. 

COROLLARY 5.6: For any n ~ 2 d there exists a 1-stacked cubical d-polytope P 

with at least n vertices, hence gc(OP) lies on the ray el, with g~(OP) arbitrarily 

large. 
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5.2 PL CUBICAL SPHERES. Though we can go no further with cubical poly- 

topes, we can show that Conjecture 5.2 holds for PL cubical spheres. We prove 

the following 

THEOREM 5.7: For each 1 < i < d/2, there exist PL cubical d-spheres with gC 

arbitrarily close to the ray ei. 

Proof." For a simplicial ( d -  1)-polytope P with r vertices, we let C be a PL 

cubical d-sphere and K a triangulation of P,  as given by Theorem 3.1. For n > 0, 

define the iterated fissuring 

(12) C~ := C(MK,  C \ MK°)  n 

defined by (4). Since, as in the proof of Theorem 3.1, OMK is collared in M K ,  

C~ is a PL d-sphere. 

By (1) and (5), we compute 

f (C~, t) = f(C, t) + n(1 + t)f(MOP, t) 

= f(C,t)  + n2~(l + t)f(OP, ~),  

and 

gC(C~,t) = t ( 1 - t ) d + l f ( C ~  ' i_2_~) 2d(1-- t ) ( l  + 2c~,(--t)d+2) 
l + t  l + t  

= gC(C,t) + n2r t (1 -  t)df (OP, l @ t )  

= g~(C,t) + n2~tgS(OP, t). 

Noting that  C = C °,  we rewrite this as 

(i3) g~(C~, t) = g~(C~, t) + n2~tgS(OP, t) 

to emphasize that  the first term is independent of n. 

By [13], for fixed d, there are simplicial ( d -  1)-polytopes Pm,i such that 

1 gs(OPm,i, t) ~ t i-1 - t d+l-i 
g~-l(OPm,i) 

as m ~ ee. Fixing d > 2 and 1 < i < d/2, consider the doubly indexed sequence 

of cubical d-spheres C~m,,, indexed by m and n. By a diagonalization argument 

it follows that  for every k >_ 1, there are cubical d-spheres cd, i such that  

1 - c ~ c d  t) --~ t i -- t d + 2 - i  c d Y [ k,i, gi (Ck,i) 
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as k -4 cx~. This completes the proof. | 

Remark:  For any degree d polynomial q(t), with qi : --qd-i ~-- 0 for every 
d i _< [~], a similar construction yields cubical spheres Sk and numbers uk with 

1 
- -  gC(Sk, t) -4 tq(t) 
Uk 

as k -+ c~. This is achieved by noting that the gO-polynomials of two PL 

cubical spheres are essentially added by removing one maximal cube from each 

and identifying the resulting boundaries. (The resulting complex is again a PL 

sphere [14, Corollary 3.13].) To achieve a fixed ratio a -~ q j q j ,  for example, 

we choose the sequences Pm,i and Pm,j as above and form the corresponding 

sequences G~m,~ and G ~ , j .  We simultaneously diagonalize these sequences by 

ni,m := 2rm¢g~(Pm,j)qikm and nj,m : =  2rm'g](Pm,i)qjkm, attaching C n~'m and Pm,i 
C n~'m along maximal faces, as above. Pm,j 

6. Further  c o m m e n t s  

1. Since we have shown that the Adin g-cone is contained in the closure of the 

convex hull of f-vectors of PL cubical spheres, it would be especially interesting to 

determine whether the same is true for cubical polytopes (Conjecture 5.2), and 

conversely, if the Adin g-cone contains the convex hull of f-vectors of cubical 

polytopes (Conjecture 5.1). In fact, it would be nice to know if any of the results 

here remain true if sphere is replaced by polytope. If the fissuring operation as 

applied in §3 were to preserve shellability, then all of the spheres constructed 

there could be asserted to be shellable rather than just PL.  

2. It is natural to compare the Adin h-vector and toric h-vector for cubical 

complexes. Both are invertible linear transformations of the f-vectors of cubical 

complexes, symmetric for Eulerian cubical complexes, nonnegative for shellable 

cubical complexes, and satisfy the reciprocity theorem for relative subcomplexes 

of balls [16]. A major difference is that the Adin h-vector is a lower-triangular 

linear transformation of the f-vector but the toric h-vector is not. 

It would be of interest to determine if the toric g-cone contains the Adin g- 

cone. (Hetyei [10] has done this for the corresponding h-cones.) Were the toric 

g-cone not to contain the Adin g-cone, then our work would show that cubical 

spheres do not satisfy the toric g-theorem, which holds for rational polytopes. 
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3. Adin ' s  cubical h-vector  is a sum of a l ternat ing sums of componen t s  of the 

simplicial  h-vectors  of links of vertices. Is there a convenient in terpre ta t ion  of 

these a l te rna t ing  sums? Charney  and Davis considered such a sum in the context  

of met r ic  geometry,  as did McMullen in his decomposi t ion of the po ly tope  algebra.  
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